

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 2439-2442

Tetrahedron Letters

Total synthesis of an antitubercular lactone antibiotic, (+)-tubelactomicin A

Seijiro Hosokawa, Masashi Seki, Hisato Fukuda and Kuniaki Tatsuta*

Department of Applied Chemistry, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

> Received 28 December 2005; revised 23 January 2006; accepted 23 January 2006 Available online 20 February 2006

Abstract—(+)-Tubelactomicin A (1), an antitubercular lactone, has been synthesized from (S)-citronellol (2) and 2-deoxy-L-ribonolactone (18) through intramolecular Diels–Alder reaction, Suzuki–Miyaura coupling, and Shiina macrolactonization. © 2006 Elsevier Ltd. All rights reserved.

(+)-Tubelactomicin A (1) was isolated from the culture broth of *Nocardia* sp. MK703-102F1 to show strong and specific antimicrobial activities against drug-resistant *Mycobacterium*.¹ The structure was determined by X-ray crystallographic analysis to be the 16-membered lactone fused with a trans decalin skeleton.² As the morbidity of tuberculosis with the drug-resistant strains has increased worldwide, new effective drugs are needed for treatment of *Mycobacterium tuberculosis*. The interesting chemical structure, combined with its antitubercular activities, has made (+)-tubelactomicin A (1) an attractive target for synthesis, although the total synthesis has already been accomplished by the Tadano group using intramolecular Diels–Alder reaction.³ Independently, we report herein the total synthesis of (+)-tubelactomicin A (1).

The approach involves the construction and coupling of components 7, 10, and 26 (Scheme 1), wherein stereoselective Suzuki–Miyaura coupling reaction⁴ was chosen for the key C13–C14 bond-forming reaction to assemble the C1–C13 and C14–C23 subunits⁵ (17 and 26). The segments 7 and 10 were derived from (S)-citronellol $(2)^6$ and 1,3-propanediol (8), respectively, while the segment 26 was from 2-deoxy-L-ribonolactone (18).⁷ The intramolecular Diels–Alder reaction^{8–10} of 11 and subsequent stereoselective hydride reduction to give 13 formed the basis for controlling the configuration of 6

Scheme 1.

^{*} Corresponding author. Tel./fax: +81 3 3200 3203; e-mail: tatsuta@waseda.jp

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.01.140

of 9 stereogenic centers including a quaternary carbon in (+)-tubelactomicin A (1).

O-Benzylation of **2** successively followed by ozonolysis and hydride reduction gave alcohol **3** (Scheme 2).

After tritylation, the *O*-benzyl group was submitted to a 2,3-rearrangement¹¹ with *n*-butyl lithium to give olefin **4**. Ozonolysis of **4** was followed by reaction with lithio dimethyl methylphosphonate, methoxymethylation of the resultant alcohol, and finally de-*O*-tritylation to provide phosphonate **6**. This was converted into the key segment **7** in four steps: IBX oxidation, Horner–Wadsworth–Emmons reaction, de-*O*-methoxymethylation, and then IBX oxidation.

Segment 10 was readily prepared from 8 by silulation and oxidation to give aldehyde 9 followed by Wittig olefination.

The configurations of both segments 7 and 10 were confirmed by the ¹H NMR studies. Coupling of 7 and 10 was effected using $Ba(OH)_2$ under mild conditions¹² to give the desired product 11.¹³ The intramolecular Diels–Alder reaction of 11 afforded the requisite adduct as a single product as expected from the favored transition state.^{8–10} De-*O*-silylation of the adduct gave 12, which was stereoselectively reduced to 13 and then transformed to the methoxymethyl ether 14. Their structures were supported by the ¹H NMR studies. Reaction of 14 with sodium TMS-ethylate gave the hydroxyl ester 15 without the undesired lactone formation. The alcohol was oxidized to the aldehyde, which was treated with Comins' reagent¹⁴ to give the desired acetylene 16. This was converted to the key vinyl iodide 17 according to the reported procedures.¹⁵

Synthesis of the segment **26** began with selective *O*-protection of **18** and stereoselective introduction of a *C*-methyl group¹⁶ (Scheme 3). *O*-Methoxymethylation of **19** and subsequent hydride reduction afforded diol **20**, which was selectively tritylated and then oxidized to ketone **21**. Installation of the trimethylsilylated side

Scheme 2. Reagents and conditions: (a) BnCl, NaH/DMF, 0 °C, 3 h; (b) O_3/CH_2Cl_2 , -78 °C, 1 h, then NaBH₄, -78 °C to rt, 12 h, 84% in two steps; (c) TrCl, Et₃N, DMAP/Cl(CH₂)₂Cl, 50 °C, 12 h; (d) *n*-BuLi/THF, -78 °C to rt, 1 h, 76% in two steps; (e) O_3/CH_2Cl_2 , -78 °C, 1 h, then PPh₃, -78 °C to rt, 12 h, 95%; (f) dimethyl methylphosphonate, *n*-BuLi/THF, -78 °C, 1 h; (g) MOMCl, *i*-Pr₂NEt/MeCN, 50 °C, 4 h; (h) aq AcOH, rt, 12 h, 48% in three steps; (i) IBX/PhMe–DMSO, 50 °C, 3 h; (j) triethyl 2-phosphonopropionate, *i*-Pr₂NEt, LiCl/MeCN, rt, 5 h; (k) HCl/aq THF, 65 °C, 1 d; (l) IBX/PhMe–DMSO, 50 °C, 5 h, 60% in four steps; (m) TBSCl, imidazole/MeCN, 0 °C, 1 h; (n) IBX/PhMe–DMSO, 50 °C, 1 h; (o) 2-(triphenylphosphoranylidene)-propionaldehyde/PhMe, 90 °C, 5 h, 47% in three steps; (p) Ba(OH)₂·8H₂O/aq THF, rt, 3 h, 85%; (q) BHT/xylene, 130 °C, 3 d; (r) BF₃·OEt₂/MeCN, rt, 10 min, 68% in two steps; (s) NaBH(OAc)₃/1,4-dioxane, 95 °C, 12 h; (t) CSA/Cl(CH₂)₂Cl, 70 °C, 12 h; (u) MOMCl, *i*-Pr₂NEt/Cl(CH₂)₂Cl, 50 °C, 6 h, 39% in three steps; (v) TMS(CH₂)₂ONa/THF, 50 °C, 5 min, 68%; (w) IBX/PhMe–DMSO, 50 °C, 1 h; (x) 2-[*N*,*N*-bis(trifluoromethylsulfonyl)amino]-5-chloropyridine, KHMDS/THF, 0 °C, 30 min, 60% in two steps; (y) HCl/aq THF, 60 °C, 3 h; (z) Cp₂ZrHCl/PhH, rt, 1 h, then I₂, rt, 1 h, 50% in two steps.

Scheme 3. Reagents and conditions: (a) *p*-methoxybenzyl 2,2,2-trichloroacetimidate, CSA/CH_2Cl_2 , rt, 12 h; (b) MeI, LDA/THF, $-78 \degree C$ to rt, 6 h, 60% in two steps; (c) MOMCl, *i*-Pr₂NEt/MeCN, 50 °C, 4 h; (d) LAH/THF, 0 °C, 30 min, 85% in two steps; (e) TrCl, Et₃N/Cl(CH₂)₂Cl, 50 °C, 12 h; (f) IBX/PhMe–DMSO, 50 °C, 30 min, 90% in two steps; (g) vinyltrimethylsilane, 4-bromo-1-butene, *t*-BuLi/THF, $-78 \degree C$ to rt, 1 h, 65%; (h) BF₃·OEt₂/CH₂Cl₂, 0 °C, 1 h, 75%; (i) PdCl₂/aq DMF, 0 °C, 12 h; (j) IBX/PhMe–DMSO, 50 °C, 3 h; (k) CBr₄, PPh₃/CH₂Cl₂, 0 °C, 10 min, 68% in three steps; (l) (*S*)-CBS, catecholborane/THF–CH₂Cl₂, $-78 \degree C$, 8 h; (m) *n*-BuLi/THF, 0 °C, 10 min, 59% in two steps; (n) catecholborane/THF, reflux, 3 d, 61%.

Scheme 4. Reagents and conditions: (a) $Pd_2(dba)_3$, $AsPh_3$, TIOEt/aq THF, rt, 10 min, 35%; (b) TBAF/THF, 0 °C to rt, 3 h, 95%; (c) MNBA, DMAP/CH₂Cl₂, rt, 12 h, 80%; (d) DDQ/aq CH₂Cl₂, rt, 4 h; (e) NiO₂/aq NaOH, 50 °C, 30 min, 85% in two steps; (f) HCl/aq THF, rt, 1 d, 80%.

chain gave the diastereomeric 22, which was converted into olefin 23.¹⁷ The stereochemistry was also confirmed by the ¹H NMR studies.

The terminal vinyl group of **23** was selectively oxidized to the methyl ketone under Wacker conditions, which was followed by oxidation of the primary alcohol to give the intermediary aldehyde. The aldehyde portion reacted with CBr₄ and PPh₃ to give the dibromomethylene. Sequentially, the methyl ketone portion was stereoselectively reduced with (*S*)-CBS to afford the desired **24** with a little undesired isomer.¹⁸ Exposure of the crude sample to the *n*-butyl lithium provided acetylene **25**, which was transformed to the alkenylboronic acid **26** by hydroboration with catecholborane followed by hydrolysis on silica gel.

Cross-coupling of **17** and **26** gave,⁴ after deprotection, the desired seco acid **27** (Scheme 4). Macrolactonization proceeded smoothly under Shiina's conditions¹⁹ to deliver lactone **28**.

To complete the total synthesis, removal of the *O*-MPM group was successively followed by selective NiO₂ oxidation²⁰ of the resultant allyl alcohol to the carboxylic acid **29** and de-*O*-methoxymethylation to give (+)-tube-lactomicin A (1). The analytical data of 1 were consistent with those reported previously.^{2,3}

Acknowledgments

We are grateful to the 21COE 'Center for Practical Nano-Chemistry' the Consolidated Research Institute for Advanced Science and Medical Care, a Grant-in-Aid for Scientific Research (A), and Scientific Research on Priority Areas 16073220 from Ministry of Education, Culture, Sports, Science and Technology (MEXT) for the financial supports of our program.

References and notes

- Igarashi, M.; Hayashi, C.; Homma, Y.; Hattori, S.; Kinoshita, N.; Hamada, M.; Takeuchi, T. *J. Antibiot.* 2000, 53, 1096–1101.
- Igarashi, M.; Nakamura, H.; Naganawa, H.; Takeuchi, T. J. Antibiot. 2000, 53, 1102–1107.
- (a) Motozaki, T.; Sawamura, K.; Suzuki, A.; Yoshida, K.; Ueki, T.; Ohara, A.; Munakata, R.; Takao, K.; Tadano, K. *Org. Lett.* 2005, *7*, 2261–2264; (b) Motozaki, T.; Sawamura, K.; Suzuki, A.; Yoshida, K.; Ueki, T.; Ohara, A.; Munakata, R.; Takao, K.; Tadano, K. *Org. Lett.* 2005, *7*, 2265–2267.
- 4. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
- 5. The carbon-numbering protocol parallels conveniently that of the natural product 1.¹
- Tatsuta, K.; Takano, S.; Ikeda, Y.; Nakano, S.; Miyazaki, S. J. Antibiot. 1999, 52, 1146–1151.
- Tatsuta, K.; Yasuda, S.; Araki, N.; Takahashi, M.; Kamiya, Y. *Tetrahedron Lett.* **1998**, *39*, 401–402.
- Tatsuta, K.; Hosokawa, S. Chem. Rev. 2005, 105, 4707– 4729.
- 9. Tatsuta, K.; Itoh, M.; Hirama, R.; Araki, N.; Kitagawa, M. Tetrahedron Lett. 1997, 38, 583–586.
- Tatsuta, K.; Narazaki, F.; Kashiki, N.; Yamamoto, J.; Nakano, S. J. Antibiot. 2003, 56, 584–590.
- Matsushita, M.; Nagaoka, Y.; Hioki, H.; Fukuyama, Y.; Kodama, M. Chem. Lett. 1996, 1039–1040.
- (a) Alvarez-Ibarra, C.; Arias, S.; Banon, G.; Fernandez, M. J.; Rodriguez, M.; Sinisterra, V. J. J. Chem. Soc., Chem. Commun. 1987, 1509–1510; (b) Paterson, I.; Yeung, K. S. Tetrahedron Lett. 1993, 34, 5347–5350.
- 13. ¹H NMR (600 MHz: δ , ppm from TMS, and J in Hz) spectra were in CDCl₃ solution, unless otherwise stated.

Selected data; compound 1: $[\alpha]_D^{23} + 100 (c \ 0.40, MeOH)$. ¹H NMR [in acetone-*d*₆]: δ 1.03 (3H, d, *J* = 6.0 Hz, Me-6), 2.38 (1H, d, J = 10.0 Hz, H-11), 4.71 (1H, m, H-23), 5.27 (1H, dd, J = 14.0 and 10.0 Hz, H-12), 5.73 (1H, dd, J = 15.0 and 6.0 Hz, H-15). Compound 11: $[\alpha]_D^{26} + 20$ (c 0.91, CHCl₃). ¹H NMR: δ 1.13 (3H, d, J = 7.0 Hz, Me-6), 1.80 (3H, s, Me-2), 2.80 (1H, ddq, J = 7.0, 7.0, and 7.0 Hz, H-6), 6.15 (1H, d, J = 16.0 Hz, H-8), 7.25 (1H, d, J = 16.0 Hz, H-9). Compound **12**: $[\alpha]_D^{26} + 36$ (c 1.10, CHCl₃). ¹H NMR: δ 1.03 (3H, d, J = 6.0 Hz, Me-6), 1.20 (3H, s, Me-2), 2.43 (1H, dddq, J = 12.0, 6.0, 6.0, and 1.0 Hz, H-6), 2.76 (1H, d, J = 12.0 Hz, H-8), 5.55 (1H, s, H-9). Compound 17: $[\alpha]_D^{24}$ +122 (*c* 0.26, CHCl₃). ¹H NMR: δ 1.05 (3H, d, J = 6.0 Hz, Me-6), 1.12 (3H, s, Me-2), 2.91 (1H, ddq, J = 9.0, 9.0, and 6.0 Hz, H-7), 5.82 (1H, s, H-9), 6.30 (1H, dd, J = 14.0 and 10.0 Hz, H-12). Compound **20**: $[\alpha]_D^{2/}$ +32 (*c* 0.87, CHCl₃). ¹H NMR: δ 0.89 (3H, d, J = 7.0 Hz, Me-16), 3.55 (1H, dd, J = 9.6 and5.6 Hz, CH₂-18), 3.64 (1H, dd, J = 9.6 and 3.0 Hz, CH₂'-18), 3.71 (1H, dd, J = 7.6 and 3.0 Hz, H-17), 3.82 (1H, m, H-18). Compound **23**: $[\alpha]_D^{23} + 21$ (*c* 0.60, CHCl₃). ¹H NMR: δ 0.96 (3H, d, J = 7.0 Hz, Me-16), 3.52 (2H, dd, J = 6.0 and 6.0 Hz, H-15), 3.99 (1H, d, J = 7.0 Hz, H-17), 5.68 (1H, t, J = 7.0 Hz, H-19), 5.77 (1H, ddd, J = 17.0, 10.0, and 7.0 Hz, H-23). Compound **25**: $[\alpha]_D^{23}$ +62 (*c* 0.54, CHCl₃). ¹H NMR: δ 1.15 (3H, d, J = 7.0 Hz, Me-16), 1.25 (3H, d, J = 7.0 Hz, Me-23), 2.04 (1H, d, J = 3.0 Hz, H-(31, d, J = 7.0 Hz, He-25), 2.04 (HI, d, J = 5.0 Hz, He-14), 3.76 (1H, m, H-23), 5.71 (1H, t, J = 7.0 Hz, H-19). Compound **28**: $[\alpha]_D^{23}$ +149 (*c* 0.31, CHCl₃). ¹H NMR: δ 1.04 (3H, d, J = 7.0 Hz, Me-6), 2.34 (1H, d, J = 10.0 Hz, H-11), 4.68 (1H, m, H-23), 5.29 (1H, dd, J = 14.0 and 10.0 Hz, H-12), 5.63 (1H, dd, J = 16.0 and 7.0 Hz, H-15).

- Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299–6302.
- Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976, 15, 333–340.
- Tatsuta, K.; Yasuda, S.; Kurihara, K.; Tanabe, K.; Shinei, R.; Okonogi, T. *Tetrahedron Lett.* 1997, 38, 1439–1442.
- 17. Hudrlik, P. F.; Peterson, D. J. Am. Chem. Soc. 1975, 97, 1464–1468.
- Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986–2012.
- Shiina, I.; Kubota, M.; Ibuka, R. Tetrahedron Lett. 2002, 43, 7535–7539.
- Nakagawa, K.; Konaka, R.; Nakata, T. J. Org. Chem. 1962, 27, 1597–1601.